111_008 PKCS_ElGamal-Sig

Cryptography:
Information confidentiality, integrity,
authenticity, person identification

Symmetric Cryptography Asymmetric Cryptography
Public Key Cryptography

Asymmetric encryption

Symmetric encryption
E-signature - Public Key Infrastructure - PKI

H-functions, Message digest

HMAC H-Message Authentication Code ~ E-money, Blockchain
E-voting

Digital Rights Management - DRM (Marlin)
Etc.

Symmetric - Secret Key Encryption - Decryption

. : _

Sender Encrypt Communication Decrypt Recipient
Channel

Same key is used to encrypt
and decrypt message

Shared Secret Key

Public Key Cryptography - PKC

Principles of Public Key Cryptography

Instead of using single symmetric key shared in advance by the parties for realization of symmetric
cryptography, asymmetric cryptography uses two mathematically related keys named as private key
and public key we denote by PrK and PuK respectively.

PrK is a secret key owned personally by every user of cryptosystem and must be kept secretly. Due
to the great importance of PrK secrecy for information security we labeled it in red color. PuK is a
non-secret personal key and it is known for every user of cryptosystem and therefore we labeled it by
green color. The loss of PrK causes a dramatic consequences comparable with those as losing
password or pin code. This means that cryptographic identity of the user is lost. Then, for example, if
user has no copy of PrK he get no access to his bank account. Moreover his cryptocurrencies are lost
forever. If PrK is got into the wrong hands, e.g. into adversary hands, then it reveals a way to
impersonate the user. Since user’s PUK is known for everybody then adversary knows his key pair
(PrK, Puk) and can forge his Digital Signature, decrypt messages, get access to the data available to

111_008 PKCS_EIGamal-Sig Page 1

the user (bank account or cryptocurrency account) and etc.
Let function relating key pair (PrK, Puk) be F. Then in most cases of our study (if not declared
opposite) this relation is expressed in the following way:

PuK=F(PrK).

In open cryptography according to Kerchoff principle function F must be known to all users of
cryptosystem while security is achieved by secrecy of cryptographic keys. To be more precise to
compute PuK using function F it must be defined using some parameters named as public parameters
we denote by PP and color in blue that should be defined at the first step of cryptosystem creation.
Since we will start from the cryptosystems based on discrete exponent function then these public
parameters are

PP = (p, 9).
Notice that relation represents very important cause and consequence relation we name as the direct
relation: when given PrK we compute PuK.
Let us imagine that for given F we can find the inverse relation to compute PrK when PuK is given.
Abstractly this relation can be represented by the inverse function F1. Then
Prk=F*(PuK).

In this case the secrecy of PrK is lost with all negative consequences above. To avoid these
undesirable consequences function F must be one-way function — OWF. In this case informally
OWEF is defined in the following way:

1. The computation of its direct value PuK when PrK and F in are given is effective.

2. The computation of its inverse value PrK when PuK and F are given is infeasible, meaning that to
find F1 is infeasible.

The one-wayness of F allow us to relate person with his/her PrK through the Puk. If F is 1-to-1,
then the pair (PrK, Puk) is unigue. So PrK could be reckoned as a unique secret parameter
associated with certain person. This person can declare the possession or PrK by sharing his/her Puk
as his public parameter related with PrK and and at the same time not revealing PrK.

So, every user in asymmetric cryptography possesses key pair (PrK, PuK). Therefore, cryptosystems
based on asymmetric cryptography are named as Public Key CryptoSystems (PKCS).

We will consider the same two traditional (canonical) actors in our study, namely Alice and Bob.
Everybody is having the corresponding key pair (PrKa, PuK) and (PrKg, PuKg) and are
exchanging with their public keys using open communication channel as indicated in figure below.

Asymmetric - Public Key Cryptography

PrK and PuK are related

Alice puk = F(PrK)

~Large F is one-way function
| Random Having PuK it is infeasible to find
_Number PrK = F(Puk)
Key F(x)=a is OWF, if:
Generation 1.1t easy to compute a, when F and x are
Program given.

7% 2.1t is infeasible compute x when Fand a
are given.
PrK = x <--randi ==>PuK =0 =g*mod p
Public Parameters PP = (p, g)

2ouU Y ;
Threaths of insecure PrK generation P v 222 ip\ & 9oLy i:Lan
éf;:iin?l?,—--mi}}xmxzﬂd/o pv2 lp| 2 28buts

111_008 PKCS_EIGamal-Sig Page 2

Message m<p

Asymmetric Signing - Verification Asymmetric Encryption - Decryption
Sign(PrKs, m) =6 =(r, s) c=Enc(PuKx, m)
V=Ver(Puks, m, 6), Ve{True, False} = {1,0} M=Dec(PrK, c)

Alice — Bob
ra =X PuK,=a
ol | [0 |+ Q=g Hell A—=p
Bob Sign 4 Alice! —» Encrypt
Alice's Alice's
_ private key m * public key
N . m<p }c
=)o
S
Bob Alice
PuKp=a v PrKa = x
Hello /h Hello /h
<4— Verify <¢— Decrypt
Bob Alice's Alice! B Allces
public key private key

ElGamal Cryptosystem

1.Public Parameters generation PP = (p, g).
Generate strong prime number p: >> p=genstrongprime(28) % strong prime of 28 bit length
Find a generator gin Z,*={1, 2, 3, ..., p-1} using condition.

Strong prime p=2q+1, where q is prime, then g is a generator of Zp* . 5> 2A28-1
g?+# 1 mod p and g%# 1 mod p. ans = 2.6844e+08
Declare Public Parameters to the network PP = (p, g); P=268435019; 0=2; . int64(2728-1)

2/28-1= 268,435,455 ans = 268435455
PrK = x <--randi ==>PuK =a=g*mod p

El-Gamal E-Signature

The EIGamal signature scheme is a digital signature scheme which is based on the difficulty of
computing discrete logarithms.

It was described by Taher EIGamal in 1984. The ElIGamal signature algorithm is rarely used in practice.
A variant developed at NSA and known as the Digital Signature Algorithm is much more widely used.
The ElGamal signature scheme allows a third-party to confirm the authenticity of a message sent

over an insecure channel.
From <https://en.wikipedia.org/wiki/ElGamal_signature scheme>

111_008 PKCS_EIGamal-Sig Page 3

https://en.wikipedia.org/wiki/Digital_signature
https://en.wikipedia.org/wiki/Discrete_logarithm
https://en.wikipedia.org/wiki/Taher_ElGamal
https://en.wikipedia.org/wiki/NSA
https://en.wikipedia.org/wiki/Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/ElGamal_signature_scheme

EC Gamal 34n. — Digal Sgnoainre /. (PA) NSA
Ef&'/aﬁé carve DSA — £ CDSA Certicom

Alice PrKa = X Signature creation for message M >> p.
oo | [g |+ O=np
Bob | > 9" Alais . Compute decimal h-value h=H(M); h<p.

1
2. Generate >> i =int64(randi(p-1)) % such that gcd(i,p-1)=1.
3. Compute it mod (p-1). You can use the function

r } G >> i_mi=mulinv(i, p-1);
- s

private key

4. Compute r=g'mod p.
5. Compute s=(h-xr)itmod (p-1).
Bob l PuKa = a 6. Signature on h-value h is 6 = (r,s)
el W Sign(x,h) = 6 = (1.s).
Alice's
public key
>> p=int64(genstrongprime(28)) >> i=randi(p-1) st o
i=1.1728e+08
>> p= int64(268435019) >> i=int64(randi(p-1)) [gastimit | [gasPrice |
p = 268435019 i=47250243
>>g=2 >> ged(i,p-1) I to I l value]
g=2 ans=1
>>i_mil=mulinv(i,p-1) [v] T s]
i_ml1=172715821
>> mod(i*i_m1,p-1)
ans=1 \/—\

Tx = 2 nonce || gaslimit || gasteicell ¥o || vabue | datze
h:H(“{;) é\:(r’,s)*:%fm(ﬂnkjf’))

1.Signature creation
To sign any finite message M the signer performs the following steps using public parametres PP.

e Compute h:H(M).
e Choose arandom isuchthat1<i<p—21andgcd(i,p—1)=1.
e Compute it mod (p-1): it mod (p-1) exists if gcd(i, p — 1) =1, i.e. i and p-1 are relatively prime.

k't can be found using either Extended Euclidean algorithmt or Euler theorem or

>>i_ml=mulinv(i,p-1) % i'mod (p-1) computation.

 Compute r:g‘ mod p
« compute S=(h-Xxr)i-tmod (p-1) --> h=xr+is mod (p-1)

o —4 .
Signature 6:(r,S) 5= (h=xr) i /£ '
s = (h—ser). 75 b7 mpﬁ/fj
heyr =5, h = X.t+ /-<

111_008 PKCS_EIGamal-Sig Page 4

https://en.wikipedia.org/wiki/Greatest_common_divisor
https://en.wikipedia.org/wiki/Greatest_common_divisor

2.Signature Verification
A signature 6:(r,S) on message M is verified using Public Parameters PP=(p, g) and Pu x=a.

1. Bob computes h:H(M).
2. Bob verifies if 1<r<p-1 and 1<s<p-1.

3. Bob calculates V1=g" mod p and V2=a"rs mod p, and verifies it V1=V 2.

The verifier Bob accepts a signature if all conditions are satisfied during the signature creation
and rejects it otherwise.

3.Correctness

The algorithm is correct in the sense that a signature generated with the signing algorithm will
always be accepted by the verifier.

The signature generation implies

h=xr+is mod (p-1)

Hence Fermat's little theorem implies that all operations in the exponent are computed mod (p-1)

ghmod p:g(xr+is) mod (P-)mod p= gxrgis = (gx)r(gi)s: ars mod P

V1 (@) (r) V2
Pe=(rs%)
o zer?m{;@gni) Dot 2 T ooy A P - G tieves ¢ hal
V’ﬁ’””w avd T o soprddnd [7 Pl =1 is O%JD[

fou Wiy Puld =v
m = 7 Bob ge?’wzfy

_ Aedict the séanalme 6
6 = sign (=, \/”):C‘ﬁé) — 1, 6= (hs) ’—9@ v r

on M waing Pl = aud
VOUu catlon patses.
Before Bob vorifict amg sgptue with somoene P he st fe score
that” Huis (1 is qot from the ertain pocson, €7 ST dodt ol

Yrom ﬂ%bﬁ%at Aee X

It ie ki cvedd dy creat? o af PK T - Fdbtsr l(% Lfiestrrcctosce whes
Trusted T hivd /%Wgr (TTP) seechs @t @kfz)é’mﬁﬂw ,44/7%9/7%? Je nirLolued.
CA 45 tsuing Okl Crfificates fop ang wser fy signiveg D)<

Whaop et proyes Wic/bher 29/4%?7’%? 2o CA.

oy Tdewts ficalion Cafea - ID #‘} ChH v Crll,n 5 Pul, 4,
Pric ;=X sPui = Q. S 1D
Dulcy fbgb(PrkaA;PuMA)f%

) ilr | /n)f}//\ .

111_008 PKCS_EIGamal-Sig Page 5

https://en.wikipedia.org/wiki/Fermat%27s_little_theorem

3 (V\A-ﬂ/\’)[’[/tl/\A/*u,

pﬂKA &ﬂ/l’“z//))
Bt e (a4l , 55) = Trwe

Ce FZ'A

roo—

=

I cwre that Puldy iz of fF
Siuce CH iz 7TP & 82 can dpwnloagl [LI,, wAend his Grows ef

wit Kuwwn to everyone 2iul

http s /] cortification Authority, Tusted, com
httpsi [l carticom. comn

Move byt thak = iy wwalule C170 MAOD.

>> p= int64(268435019)

p = 268435019
>>g=2;

>> x =int64(randi(p-1))
x = 65770603
>>a=mod_exp(g,x,p)
a=232311991

>> M="Hello Bob..."

M = Hello Bob...

>> h=hd28(M)

h =150954921

Till this place

>> i =int64(randi(p-1))
i=201156232

>> ged(i,p-1)

ans =2

>> i =int64(randi(p-1))
i =35395315

>> ged(i,p-1)

ans=1

>> i_ml=mulinv(i,p-1)
i_ml1=192754179
>>mod(i*i_m1,p-1)
ans=1

111_008 PKCS_EIGamal-Sig Page 6

>>r=mod_exp(g,i,p)
r=172536234

>> hmxr=mod(h-x*r,p-1)
hmxr = 20262153

>> s=mod(hmxr*i_m1,p-1)
s =44575091

A A
Duly fbé'”(ﬂ‘m;?u@)f@
@l/fA:?@)/DaZZ’;

>>g h=mod_exp(g,h,p)
g _h=241198023
>>V1=g h
V1=241198023

>>a_r=mod_exp(a,r,p)
a_r =49998673
>>r_s=mod_exp(r,s,p)
r_s=111993804
>>V2=mod(a_r*r_s,p)
V2 =241198023

